
Module 4
WEB APPLICATION TOOLS

Scanning for web vulnerabilities tools

 Only a few kinds of web servers drive the Web’s traffic. Apache HTTP Server is the

most recognizable in the open source category, while Microsoft’s Internet

Information Server (IIS) is the most recognizable commercial one.

 The web server is the most obvious component of a web application plat-form;

something has to deliver pages to web browsers. But the platform may also

comprise data stores, load balancers, and the programming framework used to

write pages.

 We can use a web vulnerability scanner to test the basic security of a web

application.

 A vulnerability scanner contains a knowledge base of all vulns reported for different

components of a web platform.

Nikto

 Nikto is web specific scanner.

 Developed by Chris Sullo and David Lodge.

 It is a Perl-based scanner that searches for known vulnerabilities in common web

applications, looks for the presence of common files that have the potential to leak

information about an application or its platform, and probes a site for indicators of

common misconfigurations.

 The tool focuses on identifying vulns in commercial and open source web
application frameworks.

 It won’t be as helpful for assessing the security of a custom web application. For

example, it may tell that a site uses an outdated (and insecure) version of

WordPress, but it won’t be able to tell if the blogging application we wrote from

scratch is secure or not.

Contd..
Implementation

 Nikto is written in Perl, so it will run on any platform that Perl runs on.

Scanning

 Nikto is uncomplicated, but not unsophisticated. Use the -host option to start
scanning a single target for the presence of default files, pages that might expose
sensitive information, or pages with known vulnerabilities.

 The tool requires a target for running.

 specify the target (-host or –h: Specifies the target. Use a dash (-h -) to take the
target name from stdin on the command line. This is useful for typing multiple
commands together, such as nmap: nmap -p80 192.168.0.0/24 -oG - | nikto.pl –h-):
,

 specify the port (-p:Specifies an arbitrary port. Take care: specifying port 443 does
not imply HTTPS. We must remember to include –ssl.),

 and record the output to a file(-output: Logs output to a file. For example: -output
nikto80_website.html –F htm).

Contd..

 Some of the basic options necessary to run Nikto

Contd..

 Some of the basic options necessary to run Nikto

Contd..
Nikto Components

 A line that starts with the # character is ignored. The following example shows some default
settings:

#CLIOPTS=-g –a

SKIPPORTS=21 111

USERAGENT=Mozilla/5.00 (Nikto/@VERSION) (Evasions:@EVASIONS) (Test:@TESTID)

RFIURL=http://cirt.net/rfiinc.txt?

DEFAULTHTTPVER=1.1

#PROXYHOST=10.1.1.1

#PROXYPORT=8080

#STATIC-COOKIE=cookiename=cookievalue

@@MUTATE=dictionary;subdomains

@@DEFAULT=@@ALL;-@@MUTATE;tests(report:500)

 The CLIOPTS setting contains command-line options to include every time Nikto runs. This is useful
for shortening the command line if we always wish to include certain options.

Contd..

 The SKIPPORTS setting determines whether Nikto will ignore a target if given one of

these ports.

 Modify the USERAGENT setting to spoof the header used by a particular browser. This

only spoofs the header; it doesn’t affect behavior and browser- fingerprinting that a

server may attempt against the client.

 Nikto uses the RFIURL to determine if a web page is vulnerable to remote file

inclusion. For example, a page might expect to load HTML from a template stored

on its own server and use a URL like http://web.site/index?page=contact.html. Nikto

(or a hacker) could try substituting a link for the contact.html page, as in a URL like

http://web.site/index?page=http://cirt.net/rfiinc.txt. If the web application retrieves

and executes the PHP code from the cirt.net server, then the application is one step

away from being completely compromised.

Contd..
 The catch is that every time we run a scan—and every time we find a web site that

is vulnerable to an RFI attack—we’re signaling its presence in the logs at cirt.net. If
we change the link to point to our own page on our own web server, we can check
our logs instead.

 Use the PROXY* settings to enable proxy support for Nikto.

 Although there is rarely a need to change the DEFAULTHTTPVER setting, we may find
servers that support only version 1.0.

 The @@MUTATE and @@DEFAULT values affect which scan databases Nikto will use to
search for vulns against the target. The @@MUTATE settings greatly increase the time
it takes to scan a target because they create different combinations of files and
directories in order to find vulnerable resources whose location has been slightly
altered from its expected default location.

 Nikto uses the files in the database subdirectory to determine what kinds of test it
performs and how it categorizes responses from a server. The most important file is
the db_dictionary file that contains a manifest of common directories found on web
servers.

w3af
 w3af (web application attack and audit framework) is an open-source web

application security scanner. The project provides a vulnerability scanner and
exploitation tool for Web applications. It provides information about security
vulnerabilities for use in penetration testing engagements. The scanner offers a
graphical user interface and a command-line interface.

 w3af is divided into two main parts, the core and the plug-ins. The core coordinates
the process and provides features that are consumed by the plug-ins, which find
the vulnerabilities and exploit them. The plug-ins are connected and share
information with each other using a knowledge base.

 Plug-ins can be categorized as Discovery, Audit, Grep, Attack, Output, Mangle,
Evasion or Bruteforce.

 w3af was started by Andres Riancho in March 2007

 It is a software that will identify vulnerabilities in web applications by sending
specially crafted HTTP requests to it.

 The framework work on all Python supported platforms. It supports mainly LINUX
Oses. But it can be installed on Windows OS also.

Contd..
Main plugin types

 The framework has three main plugins types: crawl, audit and attack

 Crawl plugins

 They have only one responsibility, finding new URLs, forms, and other injection points. A
classic example of a discovery plugin is the web spider. This plugin takes a URL as input
and returns one or more injection points.When a user enables more than one plugin of
this type, they are run in a loop: If plugin A finds a new URL in the first run, the w3af core
will send that URL to plugin B. If plugin B then finds a new URL, it will be sent to plugin A.
This process will go on until all plugins have run and no more information about the
application can be found.

 Audit plugins

 Take the injection points found by crawl plugins and send specially crafted data to all in
order to identify vulnerabilities. A classic example of an audit plugin is one that searches
for SQL injection vulnerabilities by sending a'b"c to all injection points.

 Attack plugins

 Their objective is to exploit vulnerabilities found by audit plugins. They usually return a
shell on the remote server, or a dump of remote tables in the case of SQL injection
exploits.

Contd..
Other plugins

 Infrastructure

 Identify information about the target system such as installed WAF (web application

firewalls), operating system and HTTP daemon.

 Grep

 Analyze HTTP requests and responses which are sent by other plugins and identify

vulnerabilities. For example, a grep plugin will find a comment in the HTML body that has

the word “password” and generate a vulnerability.

 Output

 The way the framework and plugins communicate with the user. Output plugins save the

data to a text, xml or html file. Debugging information is also sent to the output plugins

and can be saved for analysis

 Mangle

 Allow modification of requests and responses based on regular expressions, think “sed

(stream editor) for the web”.

Contd..
Other plugins

 Bruteforce

 Bruteforce logins found during the crawl phase.

 Evasion

 Evade simple intrusion detection rules by modifying the HTTP traffic generated by other
plugins.

 Scan configuration

 After configuring the crawl and audit plugins, and setting the target URL the user starts the
scan and waits for the vulnerabilities to appear in the user interface.

 Any vulnerabilities which are found during the scan phase are stored in a knowledge
base; which is used as the input for the attack plugins. Once the scan finishes the user will
be able to execute the attack plugins on the identified vulnerabilities.

 In most cases it is recommend to run w3af with the following configuration:

 crawl: web_spider

 audit: Enable all

 grep: Enable all

HTTP Utilities

Stunnel
 There are situations in which the client sends out HTTPS connections and cannot be

downgraded to HTTP. In these cases, you need a tool that can either decrypt SSL or
sit between the client and server and watch traffic in clear text. Stunnel provides this
functionality.

 Stunnel is a proxy designed to add TLS (Transport Layer Security) encryption
functionality to existing clients and servers without any changes in the programs'
code. Its architecture is optimized for security, portability, and scalability (including
load-balancing), making it suitable for large deployments.

 Stunnel is a free software authored by Michał Trojnara.

 Stunnel uses the OpenSSL library for cryptography, so it supports whatever
cryptographic algorithms are compiled into the library

 SSL communications rely on certificates. The first thing you need is a valid PEM file
that contains encryption keys to use for the communications. Stunnel comes with a
default file called stunnel.pem, which it lets you define at compile time.

Contd..

 One use of stunnel is to intercept traffic by downgrading client connections from

HTTPS to HTTP, inspect or manipulate the traffic, and then upgrade the connection
back from HTTP to HTTPS for the server. The concept is similar to using an interactive

proxy to be able to view the plaintext form of HTTPS traffic.

 Run stunnel in normal daemon mode (-d). This mode accepts SSL traffic and outputs

traffic in clear text. The –f option forces stunnel to remain in the foreground. This is

useful for watching connection information and making sure the program is

working. Stunnel is not an end-point program.

 In other words, we need to specify a port on which the program listens (-d port) and

a host and port to which traffic is forwarded (-r host:port)

 Run stunnel in client mode with the -c option to accept plaintext traffic and forward

it over an SSL/TLS connection to a remote (-r) host.

 Stunnel is a robust way to wrap SSL/TLS protection around an otherwise unencrypted

service. Use the -l option to specify the full path to a service daemon.

Contd..

 Most services natively support SSL/TLS connections. This is more useful for setting up

redirects in order to inspect traffic between a client and server.

 For example: Some clients either don’t provide HTTP proxy settings (otherwise you

could use a tool like the Zed Attack Proxy discussed a bit later) or run some

protocol other than HTTP over the SSL/TLS connection. In these cases, it’s necessary

to use host spoofing tricks and redirection so that you can “downgrade” the client’s

connection from SSL/TLS in order to manipulate it, then “upgrade” the connection

back to SSL/TLS when sending traffic on to the server.

Password Cracking and Brute-Force Tools

John the Ripper

 John the Ripper remains one of the fastest, most versatile, and most popular

password crackers available. It supports password hashing schemes used by many

systems, including most Unix-based systems (like OpenBSD and various Linux

distributions) and the various Windows hashes, as well as proprietary password

hashing functions used by several database and software packages for user
account management. John’s cracking modes include specialized wordlists, the

ability to customize the generation of guesses based on character type and

placement (useful when targeting a specific password policy), raw brute force, and

statistically guided brute force that uses successfully cracked passwords to

influence future guesses.

 John runs on just about any operating system.

Contd..

Implementation

 Obtain and Compile John

 John has hard-coded many compilation flags and optimization settings for dozens

of specific operating systems and CPU architectures.

 The following commands would compile John under OS X, Cygwin, and FreeBSD:

 $ make macosx-x86-64

 $ make win32-cygwin-x86-sse2

 $ make freebsd-x86-64

 The make step configures and compiles John for our platform. When this step has

finished, the binaries and configuration files will be placed in the ./run directory

relative to the ./src directory in which you executed the make command.

 If it has installed correctly, then we can run John.

 Now verify that John works by generating a baseline cracking speed for our

Contd..

Cracking Passwords

 John automatically recognizes common password formats extracted from operating
system files like /etc/ shadow or dumped by tools like pwdump. In practice, John
supports close to 150 different hashing algorithms

 The following example shows John’s ability to guess the correct format for password
entries.

 First, create a text file named windows.txt with the following two lines containing an entry for
“Ged” and “Arha.” They represent passwords taken from a Windows system.

Ged:1006:NO PASSWORD*********************:FB9C381BD729E7A93C14EBAFBA9B78DE:::

Arha:1007:NO PASSWORD*********************:2C5F5597333BD214B5BEA2C01C591BC9:::

 Next, run John against the windows.txt file:

$./john windows.txt

Warning: detected hash type "nt", but the string is also recognized as "nt2"

Use the "--format=nt2" option to force loading these as that type instead

Loaded 2 password hashes with no different salts (NT MD4 [128/128 X2 SSE2-16])

Tenar (Arha)

Contd..

 The brute-force attack should very quickly discover that “Tenar” is the password for

the Arha account. It will take much longer to guess the Ged account’s password

unless we try some refinements to the brute-force approach.

 In the example, John recommended that we use the --format=nt2 option to

explicitly define which hash algorithm to target with the cracker. If the format isn’t

evident, or John misinterprets the format of the target file, use that option to correct

it. We can obtain all formats supported by John with the --list option, as follows:

$./john --list=formats

...

$./john --list=format-all-details

 To make effective and to reduce time consuming in password cracking using John,

expend the resources effectively

 We can try to improve the power of the brute-force attack by optimizing the
implementation of algorithms, using faster CPUs, using customized processors,

distributing the work, etc. to attain higher cracks per second

Contd..

 We can try to improve the efficiency of the attack by guiding the sequence of

guesses or choosing dictionaries that are statistically more likely to match the kinds

of passwords humans create.

 One password should have been cracked so far. We use the --show option to list it:

$./john --show windows.txt

Arha:Tenar:NO PASSWORD*********************:2C5F5597333BD214B5BEA2C01C591BC9:::

1 password hash cracked, 1 left

 John keeps track of all passwords it has ever cracked in a john.pot file by default.
For example, here’s what ours currently looks like:

$ cat john.pot

NT2c5f5597333bd214b5bea2c01c591bc9:Tenar

 Use the --pot option to specify alternate files to store (or read) cracked passwords
from.

Contd..

 From an efficiency perspective, we can try different wordlists (aka dictionaries) of

common passwords against our unknown hashes. The measure of “common” may

be based on past successful cracks, actual dictionaries, or popular terms from

media. Use the --wordlist option to try a (relatively) quick pass against the hashes.

John provides a single dictionary, password.lst, with its distribution. We can find

more, larger dictionaries on the John the Ripper web site.

Incremental Mode Cracking

 John’s incremental mode uses “charset” files and john.conf directives to control
what kinds of guesses it performs and therefore how many guesses and how long

the guesses will take to complete.

 John comes with several predefined incremental modes.

 John’s incremental mode tries all eventual permutations of a charset file

 Incremental mode is guaranteed to guess every combination at the expense of

taking a very, very long time to complete.

Contd..

 By default, the mode tries all combinations between one and eight characters long.

 If we want to target a specific length, we can edit the john.conf file to add a new

incremental mode.

 John builds the charset file with statistical properties from an input file that contains

the target characters.

Markov Mode Cracking

 One of John’s improvements over time is its adoption of cracking techniques that

rely on the statistical composition of cracked passwords to guide the generation of

new guesses.

 Its Markov mode tries a limited set of permutations based on a “stats” file.

 Markov mode trades completeness for speed; it tries guesses that are very close to

known passwords under the assumption that humans choose passwords based on
habit or identifiable patterns.

 Use the --markov option to start this mode against a password file.

Contd..

 Markov mode is most useful when targeting long passwords. For example, trying to

brute force a 19-character password composed from a pool of 96 characters is

roughly equivalent to brute-forcing a 125-bit encryption algorithm.

 In order to use Markov mode against long passwords, you need to provide the

calc_stat command with a source of words of the same size.

Contd..

Pwdump-Grabbing Windows Password Hashes
 The original pwdump program was written by Jeremy Allison in 1997 to

demonstrate how to extract password hashes from the Windows Registry.

 Till then there are a number of versions availabale.But they all rely on extracting
hashes from the Registry, SAM file, or the lsass.exe process’s memory space. The
lsass.exe process handles the Local Security Subsystem Service; it’s essentially
responsible for authentication, which is why its memory contains the system’s
password hashes.

Pwdump6

 The pwdump tools are simple to use. They require Administrator privileges, so wewill
need to start the cmd.exe shell with Run As Administrator.

 The following example demonstrates pwdump6 on a 64-bit Windows system. The -x
option is necessary to let pwdump6 know the target system is 64-bit. Otherwise, the
process will hang without returning results. The -n option instructs pwdump6 to
forego the search for password histories. The output may be passed to John the
Ripper in order to start cracking hashes.

Contd..

C:\pwdump6\PwDumpRelease> PwDump.exe -n -x localhost

Administrator:500:NO PASSWORD*********************:NO

PASSWORD*********************:::

Arha:1007:NO PASSWORD*********************:2C5F5597333BD214B5BEA2C01C591BC9:::

Ged:1006:NO PASSWORD*********************:FB9C381BD729E7A93C14EBAFBA9B78DE:::

Guest:501:NO PASSWORD*********************:NO PASSWORD*********************:::

Completed.

 Pwdump6 supports remote enumeration provided you have Administrator access to

the target’s network shares

Pwdump7

 Pwdump7 is hardly any different from pwdump6 in terms of execution. Its

command- line options enable us to specify specific source files from which to
extract hashes.

 It does not support remote access to a target.

Contd..

THC-Hydra

 THC-Hydra (aka simply Hydra) easily surpasses the majority of brute-force tools

available on the Internet for two reasons: it is fast, and it targets authentication

mechanisms for several dozen protocols.

 When we need to brute force crack a remote authentication service, Hydra is often

the tool of choice. It can perform rapid dictionary attacks against more than 50

protocols, including telnet, ftp, http, https, smb, several databases, and much more

Implementation

 Hydra compiles on BSD and Linux systems without a problem; The software can be

used under Windows through the Cygwin environment. Follow the usual ./configure,

make, make install method for compiling source code.

Contd..

 The command-line arguments

Contd..

